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• Over 25 year history of ISU and IDALS working together 
collaboratively on this research

• Resources have been leveraged to acquire funding from EPA, NIFA, 
FSA, INRC, NRCS, and Iowa Corn Promotion Board



 Performance of in-field practices

 CREP wetland performance

 Watershed scale outcomes
– Monitoring N & P loads to streams

– Modeling watershed scale outcomes

Linking Agricultural Practices to 
Water Quality Improvement:
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Calculated based on close 
interval monitoring of  
flows and concentrations

Comparison of predicted and observed load for 
1) Validation and error estimation
2) Iterative improvement of approach/tool
3) Establishing capabilities and limitations of approach/tool

(IDALS and INRC)

(Iowa Corn Promotion Board 
and USDA)

(IDALS and USDA NIFA)

(IDALS and INRC)

(IDALS, INRC, and USDA‐NRCS)

Conceptual Framework
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NWRF Drainage
Gilmore City DRF

NERF Drainage

COBS

SERF Drainage

Replicated subsurface drainage plots to evaluate performance 
of various in-field management practices



NWRF Drainage
Gilmore City DRF

NERF Drainage

COBS

SERF Drainage

Gilmore City site has operated continuously 
since 1990 with primary funding from the 
Iowa Department of Agriculture and Land 
Stewardship

Replicated subsurface drainage plots to evaluate performance 
of various in-field management practices



Plot Sampling Layout
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Perforated border tile -
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Flow monitoring sump
(three drain lines in each sump)

Treatment plot
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Flow and sampling set-up at Gilmore 
City site



Timing of Subsurface Drainage 
(1990-2011)



Nitrate-N Concentration Variability Even 
at Same N Rate



Nitrate-N Concentration is Influenced by N 
Application Rate



Impacts of Cover Crops on Nitrate-N Concentration in 
Drainage Water – Gilmore City – System with Tillage

~25% Reduction in Nitrate-N Concentration 
With Annual Rye Cover Crop



Impact of Application Timing: 2001-14
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 Performance of in-field practices

 CREP wetland performance

 Watershed scale outcomes
– Monitoring N & P loads to streams

– Modeling watershed scale outcomes

Linking Agricultural Practices to 
Water Quality Improvement:



Corn 

Soybean

1 km

Targeted Wetland Restoration

DD Tile

There is considerable interest in using wetlands to intercept and 
reduce nitrogen loads in tile drained landscapes.





Field sites instrumented for 
automated sampling and flow 

measurement

Monitoring of Wetland Performance



Flow
Observed inflow nitrate-N concentration 
Observed outflow nitrate-N concentration
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Monitoring of Wetland Performance
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Examples from annual monitoring
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Wetlands targeted to intercept nitrate loads at the point of delivery 
to streams can be extremely effective in reducing nitrate loads. 
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Hydrologic and nutrient loading rates are 
major drivers of wetland performance. 

Wetlands occupying only 1% of landscape can reduce 
long term average nitrate loads about 50%.  



 Performance of in-field practices

 CREP wetland performance

 Watershed scale outcomes
– Monitoring N & P loads to streams

– Modeling watershed scale outcomes

Linking Agricultural Practices to 
Water Quality Improvement:



Field scale reflects processes and practices but 
may not reflect actual delivery to streams



Field scale reflects processes and practices but 
may not reflect actual delivery to streams

Field to stream 
transport



Larger scales reflect combination of 
delivery and in-stream processes

Field scale reflects processes and practices but 
may not reflect actual delivery to streams

Field to stream 
transport



Larger scales reflect combination of 
delivery and in-stream processes

Field scale reflects processes and practices but 
may not reflect actual delivery to streams

Field to stream 
transport

In-stream 
processes



Larger scales reflect combination of 
delivery and in-stream processes

This scale reflects nutrient load 
actually delivered to stream

Field scale reflects processes and practices but 
may not reflect actual delivery to streams

Field to stream 
transport

In-stream 
processes





Monitoring sites instrumented 
for close interval sampling and 

flow measurement



 Phosphorus
– Tile drainage delivers much higher P loads to streams than previously thought 

based on plot scale research and surface runoff contributes only about half of 
the total P load in tile drained landscapes. This is important since practices 
that target surface runoff will have less effect on P loads than expected. 

 Nitrogen
– Regardless of the extent or capacity of tile drainage, row cropped lands export 

significant nitrate loads to streams. 

– Wetlands sited to intercept NPS nutrient loads could contribute significantly to 
meeting statewide N reduction goals. 

Watershed Scale Findings
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TP concentration and yields in surface runoff and “matrix” flow



TP concentration and yields in surface runoff and “matrix” flow



Average TP 
Yield 
(kg/ha/yr)

Average TRP 
Yield 
(kg/ha/yr)

TRP 
percent of 
TP

CLA1 0.46 0.36 78
PAL3 0.76 0.55 72
PAL5 0.73 0.49 67
PAL7 1.04 0.82 79
PAL11 0.88 0.75 85
PAL16 0.41 0.33 80
POC2 0.33 0.24 73
POC8 0.52 0.39 75

Average yields: Total phosphorus and total reactive phosphorus
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– Tile drainage delivers much higher P loads to streams than previously thought 

based on plot scale research and surface runoff contributes only about half of 
the total P load in tile drained landscapes. This is important since practices 
that target surface runoff will have less effect on P loads than expected. 

 Nitrogen
– Regardless of the extent or capacity of tile drainage, row cropped lands export 

significant nitrate loads to streams. 
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Cer/Fra and Pal/Poc synoptic sites
Selected monitoring sites

Nitrate concentration versus cropland.

-2007 estimated FWA based on AMJ average for Cer/Fra County synoptic sites
-2007 measured FWA at selected watershed scale intensive monitoring sites 

At point of delivery to stream for selected Iowa sites



Small Watershed Synoptic Sampling



 Phosphorus
– Tile drainage delivers much higher P loads to streams than previously thought 

based on plot scale research and surface runoff contributes only about half of 
the total P load in tile drained landscapes. This is important since practices 
that target surface runoff will have less effect on P loads than expected. 

 Nitrogen
– Regardless of the extent or capacity of tile drainage, row cropped lands export 

significant nitrate loads to streams and concentrations increase with increased 
extent of cropland. 

– Wetlands sited to intercept NPS nutrient loads could contribute significantly to 
meeting statewide N reduction goals.

Watershed Scale Findings



Water yield grid

Nitrate yield grid 

and loss function  

Nitrate loss gridgenerate

Estimating Potential Nitrate Loss in Wetlands



45% mass reduction

Potential N Reduction in Wetlands with Existing N Management



45% mass reduction

Reduction due to 
Fertilizer Management

Potential N Reduction in Wetlands with MRTN based N Management



45% mass reduction

Reduction due to 
Fertilizer Management

Potential N Reduction in Wetlands with MRTN based N Management
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