What are harmful algal blooms?

- A quick growth of algae in lakes and rivers
- They are actually bacteria, not algae. The scientific names is “cyanobacteria”
- These small bacteria have chlorophyll, like plants, which give them a green or blue-green color. They are photosynthetic bacteria.
- Ecologically important
 - Nitrogen cycle
 - Symbiotic relationships
 - Plants, fungi
Algae Blooms

- Abundant nutrients, proper light conditions, and warm, stagnant water
- Typically occur in late summer/early autumn
- Often float to the surface and form scums
- Accumulate along shorelines
Harmful Algae Blooms (HABs)

- Negative impact on aquatic life
 - Block sunlight
 - Deplete dissolved oxygen
 - Produce toxins

- Indicators of toxic blooms
 - Fish kills
 - Dead waterfowl and other animals in close proximity to the water
What are cyanotoxins?

- Diverse group of natural toxins
 - Cyclic peptides (hepatotoxins)
 - Alkaloids (neurotoxins, cytotoxins, dermatotoxins)
 - Irritant toxins (lipopolysaccharides)
- Biological function unclear
- Harmful concentrations during blooms
- Microcystins
 - Commonly occurring in fresh water; produced by several genera of cyanobacteria
Monitoring Program Structure

- **Sampling design**
 - Focus has been on recreational waters, primarily state park beaches
 - Weekly samples for total microcystins

- **Survey with rapid turnaround**
 - Public health decisions
 - Action threshold of 20 µg/L total microcystins

- **Samples collected Monday/Tuesday**
 - Results available Thursday afternoon
 - Resample results by Friday, if needed
Sampling Protocol

- Visual assessment
 - General appearance
 - Scums

- Sample collection
 - Composite
 - Discrete

- Transferred in coolers in dark conditions
Cyanotoxin Advisory Policy

- Three-tiered advisory policy
 - Based on results from both composite and discrete samples
 - **Stage 1** (no algal toxin-related advisories)
 - **Stage 2** (advisory) - sample result exceeds 20 µg/L total microcystins
 - **Stage 3** (closure) – toxin result > 2000 µg/L; reported health case(s).
Informing the Public

- General information signs
- Park staff notified; post advisory signs
- Iowa Department of Public Health HAN
- IDNR Beach Monitoring website
- Beach Monitoring Hotline
- Press releases
Microcystin Poisoning

- Exposure to elevated levels of microcystin can cause health impacts from different routes of exposure
 - Dermal exposure (swimming and wading in water)
 - Ingestion (drinking water, mostly incidentally for humans)
 - Inhalation (breathing – boating, water skiing)

- Health impacts are related to exposure amount
 - A low dose where no adverse health impacts are seen
 - Increasing dose causes increasing adverse health impacts
Health Impacts from Microcystin Poisoning

- Dermal Impacts
 - Skin irritation
 - Rash
 - Blistering

- Ingestion Impacts
 - Gastrointestinal distress
 - Muscle weakness
 - Liver impacts (hepatitis)
 - High doses can cause liver failure

- Inhalation Impacts
 - Slight respiratory distress
 - Severe allegoric response
Illness Surveillance

- The Iowa Department of Public Health (IDPH) is responsible for tracking illness in humans attributed to microcystin poisoning.
- Reporting of suspected cases of microcystin poisoning required of health care providers.
- The IDPH works cooperatively with local health care partners in this tracking process:
 - Local county environmental health
 - Local network of health care providers
How Illness Surveillance Works

- Mandatory reporting requires all suspected cases to be reported to IDPH
- Results from IDNR monitoring indicates elevated microcystin toxin at state beaches
- Reports of suspected cases of microcystin poisoning come from health care providers, local county health, individuals
- Reports of cases are investigated further by IDPH staff and cases entered into database.
Summary of Elevated Levels of Microcystin

- Top 10 Locations and Weeks of Elevated Microcystin Levels (2011-2016)
 (Showing County and HUC 8 Watershed)

 - Black Hawk Lake (Sac) (North Racoon) 25 Weeks
 - Green Valley Lake (Union) (Platte) 21 Weeks
 - Lake of Three Fires (Taylor) (One Hundred and Two) 11 Weeks
 - Union Grove Lake (Tama) (Middle Iowa) 10 Weeks
 - Lake Geode (Henry) (Skunk) 10 Weeks
 - Pine Lake (Hardin) (Upper Iowa) 9 Weeks
 - Big Spirit Lake (Dickinson) (Little Sioux) 7 Weeks
 - Lake Keomah (Mahaska) (South Skunk) 6 Weeks
 - Rock Creek Lake (Jasper) (North Skunk) 4 Weeks
 - Viking Lake (Montgomery) (West Nodaway) 4 Weeks
Summary of Elevated Levels of Microcystin

- Lake-Weeks* of Elevated Levels of Microcystin (2011-2016)
 - 2011 10 Lake-Weeks
 - 2012 12 Lake-Weeks
 - 2013 21 Lake-Weeks
 - 2014 21 Lake-Weeks
 - 2015 34 Lake-Weeks
 - 2016 37 Lake-Weeks

* Lake-week is defined as a week in which an elevated level of microcystin was noted at a particular lake
Suspected Cases of Microcystin Poisoning

Number of suspected cases reported

- 2011: 10 cases *
- 2012: 2 cases
- 2013: 2 cases
- 2014: 4 cases
- 2015: 8 cases
- 2016: 2 cases

* Four cases were at triathlon
Suspected Cases of Microcystin Poisoning

- Most common adverse symptom complaints
 - Diarrhea: 8 complaints
 - Stomach or abdominal pain: 7 complaints
 - Rash: 7 complaints
 - Fever: 5 complaints
 - Headache: 5 complaints
 - Fatigue: 4 complaints
 - Nausea: 4 complaints
 - Shortness of breath: 3 complaints
 - Vomiting: 3 complaints
Thank You! Questions?

Stuart Schmitz, M.S., P.E.
State Toxicologist
Iowa Department of Public Health
stuart.schmitz@idph.iowa.gov
(515) 281-8707